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Abstract

Direct kriging and simulation avoids the common Gaussian transform and permits unbiased
integration of multiscale data. Currently, kriging is performed on Gaussian data since all
conditional distributions are Gaussian and fully described by the kriging estimate and
homoscedastic kriging variance. Application of kriging to data in original units will almost
certainly lead to a variance that is incorrect since real data exhibit heteroscedastic features, that
is, a proportional effect. This paper shows that the naive form of direct sequential simulation,
where the kriging variance is taken as homoscedastic, leads to poor results. A method of DSS is
developed that corrects the kriging variance to account for the proportional effect. A
multivariate lognormal distribution is developed since it has an analytical model of the
proportional effect.

Introduction

Direct sequential simulation (DSS) [1, 2, 3] has been applied because of its ability to account for
data of various support volumes and populate unstructured grids with data at different support.
Kriging with the available data in original units is the essential idea of DSS. Although kriging
provides a valid estimate and variance for a conditional distribution, the resulting homoscedastic
variance poses a significant problem when original data units are considered; the uncertainty in
low-valued areas is over stated and the uncertainty in high-valued areas is understated.

Real data often exhibit a classical heteroscedastic relationship between the local mean and
variance, commonly referred to as the proportional effect [4]. With kriging as the main engine in
DSS, the resulting simulated values do not reproduce a heteroscedastic feature; a method must be
developed to account for the proportional effect inherent in original data units.

Simple kriging (SK) is important in DSS/simulation because of its ability to reproduce the
covariance even if the conditional distributions are not Gaussian [1]. Covariance reproduction
using SK can be easily demonstrated (Appendix B). Reproduction of the covariance only holds if
the variance of the data is homoscedastic, but in the case of lognormal data the variance is clearly
heteroscedastic.

This paper proposes a solution to the homoscedastic kriging variance problem of DSS. This is a
particularly interesting case since the mathematical relationship between the lognormal and the
commonly used normal distribution is well known, as are the equations that describe the
proportional effect of lognormal data [5]. Knowing these relations, the kriging variance can be
calibrated to honour the heteroscedasticity inherent in lognormal data. This well posed case
provides valuable insight into the nature of DSS.
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Simulation is commonly performed using data that has undergone a Gaussian/normal transform
and simulated values are then back-transformed to original units to produce a set of realizations.
In normal space, all local distributions are also normal and fully defined by the local mean and
the kriging variance; however, in original space this is not the case. For direct simulation, the
local distributions must be determined in original space (Z-space). An example of lognormal data
will be used; below we will see how lognormal data provides a very good fit to real data.

Theoretical Background

A key requirement in the derivation of SGS/DSS (see Appendix B) is that the variance be
independent of the conditional mean. The lognormal model is unique in that this requirement is
not met; it is a different model.

In order to move from simulation in normal space to simulation in original space, an idea of how
the two methods are linked would be useful. Many natural variables have an approximately
lognormal histogram. There is an analytical relationship between normal and lognormal space
providing a method to transform data between the two. Transformations involve the
distributions, the data values, and the variograms. All transformations are analytical.

Normal to Lognormal Transformation

Equations exist that describe a lognormal distribution and its relation to a normal distribution.
Since these equations are known, applying direct kriging on lognormal data is possible. A
random variable, Z | z(u)>0, is lognormal with a mean m and standard deviation ¢ if the natural
logarithm of Z(u), X(u) = /n(Z(u)) is normally distributed with mean o and standard deviation f.
Knowing the relation between Z(u) — logN(m,0) and X(u) — N(a,f), one can transform a
Gaussian distribution, Y(u) ~ N(0,1), into a lognormal distribution. Equations 1 and 2 show the
relation between X(u), ¥(u), and Z(u), where Y(u) is a standard normal distribution. Equations 3
and 4 show the relation between m and o of the lognormal with o and £ of the normal distribution.

Xu)=a+p-Y(u) 1)
Z(u) = eX(u) (1.1)
Substituting Equation / into Equation /./ yields Equation 2:

Z(u):ea—i-ﬂ-Y(u) )

2
a =1In(m) — i (3)

2
B’ :ln[1+o-—2J 4)

m

Equations 5 and 6 describe the normal and lognormal probability distribution curves, which are
quite similar in arrangement. Figure 1 shows the change in the distribution shapes as Y(u) is
converted into X(u) and as X(u) is transformed into Z(u).
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S =— )
exp{—;(x;#j :l
g(x) = oy (6)

The remaining theoretical relationships are easier to appreciate when referenced to the model and
data used for application of direct sequential simulation. For this purpose, an unconditional
Gaussian model was initially produced with dimensions of 256 by 256 (65536 data points) using
a spherical variogram with zero nugget effect and a range of 32. The simulated Gaussian values
were then transformed using Equations 1 to 4 to give a lognormal model with arbitrarily chosen
mean and standard deviation of 100 (Figure 2 shows the resulting unconditional models). From
this model, 625 values were sampled and used for kriging, see Figure 2.

Variogram Transformation

If the variogram in Gaussian space is known, it can be converted to the variogram in lognormal
space through the use of Equation 7. This actually relates the correlograms, but these are easily
converted to the variogram as shown with Equation 7.

p(h) = %[eﬁ 7 (h) —1} @)

p)=1-22 r(m)=1-y,

Oy
where r(h) is the correlation in Y-space and p(h) is the correlation in Z-space.

Figure 3 shows the variogram used to create the unconditional model along with the theoretical
variogram for the resulting lognormal model. The difference between the variograms becomes
somewhat significant as half the range is approached.

Inference of Conditional Distributions

Our goal is to calculate a conditional distribution (conditional to some number of local data) for
simulation. In a multivariate Gaussian case we transform the data, infer the parameters in
Gaussian units, and then back transform the result. The transform and back transform are
particularly easy when the data are lognormal. In fact, the shapes of all conditional distributions
in original units are lognormal when the original global histogram is lognormal (see Appendix
A).

The classic approach consists of kriging in Gaussian units; then, the distribution in original units
is inferred. The key idea of DSS is to krige in original units, but we must establish the correct
variance, which is heteroscedastic, that is it depends on the magnitude of the data and estimate.
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The heteroscedasticity is automatically accounted for in the back transform. There is no back
transform in DSS. We would have to build in some form of correction.

Homoscedastic Variance Correction

We could imagine a linear estimate that is heteroscedastic (e.g. lognormal). The kriging variance
is often assumed to be homoscedastic, which is inconsistent with data that exhibit a proportional
effect. With lognormal data, an equation exists for correcting the variance using the mean or
estimate and it can be derived from Equation 4:

where [ L2 is the homoscedastic kriging variance in X units and m§ and U; are the estimate and
variance from kriging original data.

Since mé is the estimate from kriging it can be denoted by z'(u). From Equation A2 in
Appendix A it is shown that the local S L2 value can be determined from the kriging variance in

Y-space and the global ,Bé value (the global variance in X units). Substituting these results into
the equation arrived at above yields Equation 8:

oo =z @’ -1 ()

2 . . 2 . . . .
Where o, . is the corrected variance, o, is the local variance in normal space, and g, is the
global variance of /n(Z).

To experimentally show this relation between Gaussian data and its lognormal transform, kriging
was performed on both the normal and lognormal data and the GAM program [6] was run on the
results at a specified lag (half the range was used) and the Y(u-+h) values were extracted.
Splitting the results into 50 quantiles and determining the mean and standard deviation of each
quantile shows that the variance is homoscedastic for Gaussian data and the variance depends on
the mean with lognormal data. For comparison, the analytical lines were plotted on Figure 4.

A major implication from Equation 8 is that kriging would have to be performed twice; once to
get the kriging variance in Gaussian space (oi) and again to get the estimate in lognormal space

(z'(u)). To avoid this, a relation was fit to the uncorrected Z-space kriging variance and the Y-
space kriging variance. For this particular data set, the resulting kriging variance values are
shown in Figure 5 and fitted using Equation 9. The fit is very good with an R-squared value of
0.998 and a standard error of estimate equal to 0.006456.
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o =-0.0005+0.7237(02 )+ 0.0597(c2 | —0.2425(c2 ) +0.4597(c2)  (9)

Implementation of Direct Simulation

To provide a set of results for comparing direct kriging and simulation, the current method of
simulation using SGSIM was initially applied. By setting up a simple example in Excel, it was
shown that the local distributions are in fact lognormal so the same equation used to transform the
normal model to a lognormal model as in Figure 2 could be used to back transform Gaussian
values to lognormal values in SGSIM. This result also allows the development of equations to
relate the local Gaussian distributions to the local lognormal distributions. Equations 10 and 11
show how the local Gaussian mean and variance can be transformed to the local alpha and beta
values for use in Equations 12 and 13, which are used to determine the local lognormal mean and
variance. See Appendix A for the kriging example in Excel and derivations of Equations 10 and

11.

a, =ag+f;-my (10)

where my is the local normal mean, ¢ is the global mean of /n(Z), and ¢, is the local mean of

In(2).

Bi =P oy (1
where o}, is the local normal variance and f3; is the local variance of /n(Z).
2
LRy k) (12)
2
o, = mf(e’gL —lj (13)

Three options of simulation were explored:

Option 1

Option 2

Option 3

Transform a set of lognormal samples to normal space and perform
kriging and MCS, then back-transform to lognormal space. This is the
standard/common approach. The limitation is that multiscale data are
not easily handled.

Perform direct kriging with the lognormal values with an adjusted
variogram and do MCS without correcting the kriging variance. This is
the published approach to DSS. The limitation is that
heteroscedasticity/the proportional effect is not accounted for.

Perform direct kriging on the lognormal values with an adjusted
variogram and correct the kriging variance prior to MCS. This is the
new approach that we are advocating in this paper. Multiscale data can
be used in direct kriging and the proportional effect is explicitly
accounted for.
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For each option, 100 conditional realizations were produced and the conditional mean and
variance at every location was determined. Figure 6 shows the simulation results for all three
options. To check the validity of each simulation method, reproduction of the global statistics as
well as the variogram were checked. These are shown in Figure 7.

In Figure 6, it is obvious that option 3 compares closely to the conventional simulation method
(option 1); however, performing a naive direct simulation as in option 2 results in a variance with
little fluctuation through out the map (Figure 6). Option 2 shows that performing direct
simulation, with no variance correction, tends to hide the proportional effect inherent in
lognormal data. Regardless of this incorrect variance, all three options should theoretically
reproduce the mean, variance and variogram as shown by Figure 7. It seems that with direct
simulation of lognormal data, the estimated mean value is higher than that found using
conventional Gaussian simulation. If the mean is higher, Equation 8 will force the variance at
that location to be higher as well. These problems may lead to overestimating an area, however
the differences are minimal in this case.

For additional comparison, three points were chosen from the option 1 results; one with low mean
and low variance (point 1); one with high mean and low variance (point 2); and one with high
mean and high variance (point 3). For each point, a local distribution was produced by extracting
the simulated value from the 100 realizations. Figure 8 (along with a summary table and chart)
shows the distribution for each point and for each simulation option.

From Figure 8, it is clear that the distributions for options 1 and 3 are similar; however, the
variance for option 2 does not compare. Over the three locations, the variance for option 2
remains relatively constant. This indicates that the proportional effect has been removed and the
variance is homoscedastic as would be expected with Gaussian data. To check how the
proportional effect was honored for all three options, the kriged mean and variance was extracted
at all locations and plots of the mean versus the standard deviation were produced and are shown
in Figure 9.

Conclusion

The proportional effect is a common characteristic for many data sets and cannot be reproduced
with kriging alone since the resulting variance is homoscedastic and must be corrected to
reproduce the proportional effect. The lognormal distribution is closely related to the
Gaussian/normal distribution, but it has an analytically defined proportional effect.

The results of conventional simulation and direct sequential simulation compare well with minor
differences in the overall mean and variance between the realizations. Also, the local
distributions at various locations closely resembled one another. These findings provide insight
into a possible solution to DSS when dealing with the proportional effect and lognormal data. It
is apparent that the kriging variance must be corrected such that the proportional effect is
reproduced with direct simulation.

By imposing a correction to the kriging variance prior to simulation, it is possible to perform
direct sequential simulation of lognormal data with correct/reasonable results. Correcting the
proportional effect in this manner imparts a dependency between the estimate and the variance
that is in direct contradiction to the simple kriging principle, which requires independence
between the estimate and the variance. The lognormal model is a truly different approach to
direct simulation.

104-6



References

[1]

2]

[3]

[4]

W.Xu and A.G. Journel, DSSIM: A General Sequential Simulation Algorithm, Stanford
Centre for Reservoir Forecasting, Stanford University.

A. Soares, Direct sequential simulation and cosimulation, Mathematical Geology 33 (8),
911-926, 2000

J. Caers, Adding local accuracy to direct sequential simulation, Mathematical Geology
32 (7), 815-850, 2000a

B.Oz and C.V. Deutsch, A4 Short Note on the Proportional Effect and Direct Sequential
Simulation, Centre for Computational Geostatistics, Report 4: 2001/2002.

A.G. Journel and Ch.J. Huijbregts, Mining Geostatistics, Academic Press, 1978, pp
570-573.

C.V. Deutsch and A.G. Journel, Geostatistical Software Library and User’s Guide,
Oxford University Press, second edition, 1998, pp 63-66.

A. Journel, Non-parametric Estimation of Spatial Distributions, Math Geology,
15(3):445-68, 1983.

104-7



Normal and Lognormal Distribution Transition
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Figure 1: Normal and corresponding lognormal distributions. The lognormal distribution was
calculated from the Gaussian distribution by using the transformation equations 1 to 4 above.
The lognormal distribution has a mean of 6 and a standard deviation of 3.
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Figure 2: Gaussian model and corresponding lognormal model along with their distributions.
The set of 625 samples is also shown (bottom).

104-9



0.8 -
Lognormal

Gaussian

y 0.6 1

0.4

0.2 4

Difference

0.0 ‘ ‘ ‘ ‘ : ‘
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Distance

Figure 3: Variogram model used to generate the unconditional model. The Gaussian model is
spherical with no nugget effect and a range of 32. The corresponding variogram of the lognormal
variable is shown with the difference between the two functions.
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Figure 4: Scatterplots of Y(u) versus Y(u+h) for Gaussian (upper left) and lognormal (upper
right) data. Gaussian data showing the variance is homoscedastic (lower left) and Lognormal
data displaying the proportional effect (lower right). The analytical line in the lower right plot

was determined using Equation 8. Because the global variance in Y-space is 1 and ﬂé is equal to
In(2) (see Equation 4) in normal{a,f} space, the slope of the theoretical line on the lower right

graph is one.
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Original Data with Regression Polynomial
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Figure 5: A fit of the estimation variance in Z-space versus the estimation variance in Y-space
prior to correcting the lognormal kriging variance. Bullets represent data and the black curve
displays Equation 9.
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Figure 6: The mean and variance taken over 100 realizations for all three simulation approaches.
Top — option 1; traditional method of data transformation prior to kriging and simulation, then
back transformation to get lognormal results. Middle — Option 2; naive direct simulation with no
variance correction. Bottom — Option 3; direct simulation of lognormal data with a variance
correction to account for the proportional effect.
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Figure 7: A check for mean, variance and variogram reproduction for the 100 realizations. Top —
mean reproduction; both options 2 and 3 result in a slightly higher mean than option 1. Middle —

variance reproduction; the three option compare well.

Bottom —

variogram reproduction (two

directions shown); all options are close to following the analytical variogram model (solid line).
Bullets represent the average of the 100 variograms.

104-14



Option 1, Point 2

Option 1, Point 3

o Number of Data 100
6154
std. dev 2018
coef. of var .327
maximum 1146.7
upper quartile 765.2
median 6124
lower quartle 446.6
minimum 2201

1200

Value

- Number of Data 100
mean 693.3

std. dev. 47.0
coef. of var .067
maximum 791.8

upper guartle 7303
lower quartie 653.3
minmum 568.4

T
1200

Number of Data 100
n 669.1
std dov. 1995
coet. of var .298
maximum 1165.3

vpper quartle 817.9
P! fetian 6676
lower quam\e 5208

minimum  265.0

Option 1, Point 1
- Number of Data 100 Nurmber u! Data 100 0.10
0.5 mean 34.1 a 3103
std. dev. 149 d dev 1339
coef. of var ACiE 0.12 cost of var 431
0.4 aimum 12361 0.08
veeerile “Sé weper sl 258
lower quarile 225 lower quartile 2275
> 03] m 78 5 008 minimum 1322 z 0.06]
. g ] .
g g g
I g2 i L o004]
0.04_|
o 0.02_]
0.0 . . . 0.00 | Il ﬂ. ] 0.00. |
400 800 1200 400 800 1200 400
Value Value
[Option 2 Paint 1 Number of Data 100 ption 2, Point 2 Number of Data 100 0.25_{OPtion2 Point 3
costofvnr 141 020.] cost of var 167 1
maximum 156.0 maximum §10.9 0.20
ol 2 il 2 ]
lower quartile 2.2 0.15 \owerquamle 256.0
> inimum 0.0 > B minimum 191.2 3 0.15]
g 03 5 5
g g g
[ @ 0104 & 010]
0.1] L 0.05_]
0.0. 1 T r T 0.00. | I T T 0.00. r
400 800 1200 400 800 1200 400
Value Value
Option 3, Point 1 Number of Data 100 0.15_Pon 3 Point 2 Nurmber of Data 100 Mt
05 mean 42.0 n 305.0
std. dev. 182 sid Gev 1353 0.08
coef. of var 434 coef. of var 443
0.4, upper quam”é 53 2 0.12 uppg; qﬁ.a#@ 345 5
B dian 364 dian 2905
lower quam\e 2838 lower quamle 2237 0.064
% minimum 11 3 minimum 1292 >
§ 034 § 0.08. §
g g ] g 004
. fi3 hs
0.04_] 0.02
0.1] n
00 ; . . 0.00 H | f{ il 0 [l 0.00 |
400 800 1200 400 800 1200 400
Value Value
Mean and Standard Deviation of 3 points
i 200 -
Options
. 175
Points 1 2 3
1 mean 34.13 39.22 42.05 5 150 4
stdev | 1490 | 4477 | 1827 B 125 -
2 mean 310.33 | 292.15 | 305.03 % 100
a 4
st dev 133.94 48.99 135.31 -
=
3 mean 615.45 | 693.38 | 669.16 8
c
stdev | 201.81 47.01 199.60 & 504 o . /i—-—- ——— - —-
-
(7]
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Figure 9: Local mean versus standard deviation at every estimated location for options 1 (left), 2
(middle), and 3 (right). Options 1 and 3 show the proportional effect and compare nicely. Option
2 shows a homoscedastic variance since no correction was applied.
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Appendix A
Kriging of Gaussian Data and Determination of Local Distributions

To check if the local distributions at each location being estimated are lognormal, a simple
kriging example was set up in Excel with 4 known data and 3 locations to be sequentially
estimated, see Figure Al.

120 Data Locations
-1.5 -0.5
110 | 0203 o 466
o Y*
> 100 - o Y*3
o Y*2
90 - ®50 ° 10
374 163
80 ‘ ‘ ‘
80 90 100 110 120
X
Location my 0'1%/
Y*1 -0.546 0.462
Y*2 1.073 0.396
Y*3 0.267 0.444

Figure Al: Data configuration for kriging (top) and kriging results prior to transformation to
lognormal space (bottom). Solid bullets are known data and circles are the points to be estimated.
The data values are also shown, both Gaussian (above) and lognormal (below).

To generate the local distributions corresponding to the global lognormal data with a mean and
standard deviation of 100, a set of 199 quantiles was chosen ranging from 0.005 to 0.995 and the
value corresponding to each for the local normal distributions was found. Using

Z(u) = ea+,6’~Y(u)

to transform the values to Z-space and plotting the results revealed that the local distributions are
lognormal. To check if equations A1l and A2 (below) are correct, they were used to find the local
alpha and beta values and then the LOGINV function in MS Excel was used to determine the
corresponding value for each quantile. Both methods gave equal results, see Figure A2.
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Local Lognormal Distributions
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Figure A2: Local Lognormal Distributions at each estimated location. Using both a
transformation method with tables as well as an analytical method gave equal results.
Derivation of Equations Al and A2

Starting with the equation for transforming Gaussian data, Y(u) ~ N(0, 1), to normal X-space data,
X(u) — M. p):

Xw)y=a,+B;-Y(u)

Replacing Y(u) with the kriged mean and X(u) with the local mean of /n(Z), we get Equation Al,
which relates the local mean in X-space to that in Gaussian space.

ap =g+ f-my (AD)

Where ¢, is the local mean in X-space, ag is the global mean of X(u), S¢ is the global variance of
X(u), and my is the kriged mean in Gaussian space.

To derive Equation A2, the Equation for transforming Y-space values to X-space along with the
equation defining the variance of a data set was used. The local normal kriging variance can be
defined by the following equation:

1
2 2
Oy __Z(ul —-m,
noin

2 . . . . . . . .
Where o), is the variance in Gaussian space, u; is the value at location i, and my is the mean of

all u;, i=1...n.
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To determine the local variance of /n(Z) we need to know the values of u;y and my that correspond
to u; and my in Gaussian space. Equation Al can be used to perform this transformation:

Uy =g+ Pe
my =a;+ f;-my

Substituting these into the equation for the variance in normal space (X-space), the local variance
of [n(Z) can be solved for:

1 n
ﬂLZ :;Z(ui/\’ _mx)z
i=1

B =3 (@t + it g + flm,

n

ﬂLz = %Z[ﬂc (u, - mN)]2

i=1

ﬂLz :%i(ui _mN)2

Bl =8;0x (A2)

Where ,BLZ is the local variance of In(Z), ﬂé is the global variance of /n(Z), and Gf, is the local

normal variance in Y-space.
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Appendix B
The Simple Kriging Principle

Simple kriging is the key to direct sequential simulation due to the property of covariance
reproduction even if the conditional probability distributions are not Gaussian. Reproducing the
covariance only holds if the conditional variance is independent of the data values
(homoscedastic). A proof of the covariance reproduction is provided with the following
assumptions: the data stationary variable z has a mean and variance of 0 and 1, respectively. The
conditional distributions are fully described by the kriging mean and variance. Equations B1, B2,
and B3 describe the kriging mean and variance along with the simple kriging system considering
N previous data:

z'(u) = ﬁiaz(ua) (B1)

a=1

N
ox=1-3 4, pu-u,) (B2)

N a=1
z&ap(uﬂ -u,)=pu-u,), a=1.,N (B3)

B=1

Where z*(u) is the simple kriging mean, U;K (u) is the simple kriging variance, and 4,, a=1,...,.N
are the kriging weights.

A random value Rg(u) can be drawn from a distribution described by a mean of zero and a
variance equal to the kriging variance O'SZK (u). The kriged mean and Rs(u) are added together to

get the simulated value for the location, Zg(u). An important aspect of Rs(u) is that its value is
chosen independent of the mean Z"(u).

Zg(u)=Z" (u)+ R (u) (B4)

Now that one location has been simulated, there are N+ data values for simulation of the next

node which will be denoted u’=uy.;. The simple kriging mean and variance at u’ are given by
Equations B5 and B6 along with the kriging system shown in Equations B7 and B8:

Z () => A,z(u,)+ Ay, Z, (u) (B5)

a=1

N
J;K (u') = 1 - z/lap(u'_ua) - ﬂ’N-Hp(u'_u) (B6)

a=1

N
Z/Iﬂp(uﬁ -u,)+ Ay, pu-u,)=plu-u,), a=L.,.N (B7)
p=1
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N
Z Agp(uy —u)+4y,, = p(u'-u) (BY)
Bl

Where Z*(u’) and USZK (u") are the simple kriging mean and variance at location u’ respectively.

Note that the weights 4,, a=1,...,N+1 are not the same as the weights 4,, a=1,...,N in Equation B1
to B3.

Once Z*(’) and o2 (u') are known, a random value Rs(u’) can be drawn from a distribution

with a mean of zero and a variance equal to & (1'). The simulated value at u’ is calculated as

follows:
Zs(')=Z"(u)+Ry(u') (BY)
Let’s calculate the covariance between the two simulated values:
E{Zs(u)-Zg()} = E{Z (u)-Z ()} +E{Z (u)-Rs(u')} +

. (B10)
E{Z (0')-Rg(u)} + E{Rs(u)- Ry(u")}

Where E{Z (u)-Rs(u')} and E{R (u)-R,(u')} are zero since Z (u)and R (u') are
independent of each other and R (u)and R, (u') are also independent. The remaining portions

of the right hand side are non zero since the kriged means depend on one another and also
because the kriged mean at the second location depends on the randomly drawn value at the first
location.

E{Z(u)-Zs(u)} = E{Z'(w)-Z'(u)}+E{Z (u)-Rs(w)} (Bl

Expanding and simplifying the first term from the right hand side of Equation B11:

E{Z (u) Z (w)}= Ziﬁ[zﬂap(uﬁ —ua)}
p=1 =1

Y (B12)
+ Aya 2 A EZ(WZ ()}
a=l1
Now, expanding the first term of Equation B12 and recalling Equation B3:
N N N
Z@{Z%p(uﬁ —ua)} =2 Asp(u; —u) (B13)
p=1 a=1 p=1
Expanding the second term of Equation B12:
E{Z;w)Z(u,)} = E{Z" (WZ(u,)} + E{R;(w)Z(u,)} (B14)
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Knowing that E{R,(u)Z(u,)}=0and E{Z (w)Z(u,)} = p(u—u,):

N N
Y AEZWZ(u,) =) 2, pu—u,)=1-0c5 (u) (B15)
a=1 a=1

Substituting B13 and B15 back into B12:

E(Z")-Z ()} =3 2, p, —u)+ A, [ - o w)] (B16)
B=1

Now, let’s go back to Equation B11 and expand and simplify the second term of the right hand
side:

E{Z" (u')-Rs(w)} = ﬁ:l&E{Z(ua)Rs (W} + Ay, E{Zs ()R (w)} (B17)

a=1

N
The z A, E{Z(u,)Rg(u)} term is zero since Z(u,) and Rs(u) are independent.

a=l1
By expanding the E{Z;(u)R¢(u)} portion of the second term in Equation B17, it can be shown
that it is equivalent to the simple kriging variance:

E{Z )Ry ()} = E{Z" (W)R, ()} + E{R; (w)} (B18)

Since E{Z (w)R (u)} is zero (the variance is homoscedastic. ~If the variance was

heteroscedastic, £{Z (u)R,(u)} # 0 and the covariance would not be reproduced):
E{Z;(w)Rs(u)} = E{R; ()} = o5 (w) (B19)
Substituting B19 back into Equation B17:
E{Z"(0')-Rg(u)} = Ay, 05 (u) (B20)

Substituting B16 and B20 into B11 and simplifying:

E{Z () -Z;(u')} = zﬂ’ﬂp(uﬂ —w)+ 4y, [1 - O-éK (u)]"' /1N+1O-§1< (u)
=

E{Zs(w)-ZsW)} =D A5 —u)+ Ay,
p=1

E{Z(w)- Z;(w')} = p(u'w) (B21)

By working through from Equation B11 to Equation B21, the covariance is correct. The marginal
covariance is reproduced.
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